Hadal zone

 

The hadal zone (named after the realm of Hades, the underworld in Greek mythology), also known as the hadopelagic zone, is the deepest region of the ocean lying within oceanic trenches. The hadal zone is found from a depth of around 6,000 to 11,000 metres (20,000 to 36,000 ft), and exists in long but narrow topographic V-shaped depressions.
Historically the hadal zone was not recognized as distinct from the abyssal zone, although the deepest sections were sometimes called "ultra-abyssal". During the early 1950s, the Danish Galathea II and Russian Vitjaz expeditions separately discovered a distinct shift in the life at depths of 6,0007,000 m (20,00023,000 ft) not recognized by the broad definition of the abyssal zone. The term "hadal" was first proposed in 1956 by Anton Frederik Bruun to describe the parts of the ocean deeper than 6,000 m (20,000 ft), leaving abyssal for the parts at 4,0006,000 m (13,00020,000 ft). The name refers to Hades, the ancient Greek god of the underworld.
Marine life decreases with depth, both in abundance and biomass, but there is a wide range of metazoan organisms in the hadal zone, mostly benthos, including fish, sea cucumber, bristle worms, bivalves, isopods, sea anemones, amphipods, and gastropods. Most of these trench communities probably originated from the abyssal plains. Although they have evolved adaptations to high pressure and low temperatures such as lower metabolism, intra-cellular protein-stabilising osmolytes, and unsaturated fatty acids in cell membrane phospholipids, there is no consistent relationship between pressure and metabolic rate in these communities. Increased pressure can instead constrain the ontogenic or larval stages of organisms. Pressure increases ten-fold as an organism moves from sea level to a depth of 90 m (300 ft), whilst pressure only doubles as an organism moves from 6,000 to 11,000 m (20,000 to 36,000 ft).
Only a relatively small number of fish species are known from the hadal zone, including certain grenadiers, cutthroat eels, pearlfish, cusk-eels, snailfish and eelpouts. Due to the extreme pressure, the theoretical maximum depth for vertebral fish may be about 8,0008,500 m (26,20027,900 ft), below which teleosts would be hyperosmotic, assuming TMAO requirements follow the observed approximate linear relationship with depth. Some invertebrates do occur deeper, such as certain Astrorhizana foraminifera, polynoid worms, myriotrochid sea cucumbers, turrid snails and pardaliscid amphipods in excess of 10,000 m (33,000 ft).
The only known primary producers in the hadal zone are certain bacteria that are able to metabolize hydrogen and methane released by rock and seawater reactions (serpentinization), or hydrogen sulfide released from cold seeps. Some of these bacteria are symbiotic, for example living inside the mantle of certain thyasirid and vesicomyid bivalves. Otherwise the first link in the hadal food web are heterotroph organisms that feed on marine snow, both fine particles and the occasional carcass.
The exploration of the hadal zone requires the use of instruments that are able to withstand pressures of several hundred up to a thousand or more atmospheres. Grabs, trawls, and traps have been used to collect samples of hadal organisms and sediments, however these instruments cannot be used to systematically study hadal ecology. In comparison, manned and unmanned submersibles can be used to study the depths in greater detail. Unmanned robotic submersibles may be remotely operated (connected to the research vessel by a cable) or autonomous (freely moving). Cameras and manipulators on submersibles allow researchers to observe and take samples of sediment and organisms. Failure of submersibles under the immense pressure at hadal zone depths have occurred. HROV Nereus was thought to have imploded at a depth of 9,990 meters while exploring the Kermadec Trench in 2014.
James Cameron also reached the bottom of Mariana Trench in March 2012 using the Deepsea Challenger. The descent of the Deepsea Challenger was unable to break the deepest dive record set by Piccard and Walsh by about 100 meters; however, Cameron holds the record for the deepest solo dive.
In June 2012, the Chinese manned submersible Jiaolong was able to reach 7,020 meters deep in the Mariana Trench, making it the deepest diving manned research submersible. This range surpasses that of the previous record holder, the Japanese-made Shinkai, whose maximum depth is 6,500 meters.